POST /v1/predict
Make predictions using all loaded forecasting models in parallel, useful for ensembling or A/B testing.
Example:
curl --request POST \
--url http://localhost:8090/v1/predict \
--data '{
"predictions": [
{
"model_name": "drive_stats_a"
},
{
"model_name": "drive_stats_b"
}
]
}'
Parameters:
model_name
: References a model name defined in thespicepod.yaml
.
{
"duration_ms": 81,
"predictions": [
{
"status": "Success",
"model_name": "drive_stats_a",
"model_version": "1.0",
"lookback": 30,
"prediction": [0.45, 0.5, 0.55],
"duration_ms": 42
},
{
"status": "Success",
"model_name": "drive_stats_b",
"model_version": "1.0",
"lookback": 30,
"prediction": [0.43, 0.51, 0.53],
"duration_ms": 42
}
]
}
Limitations
- Univariate predictions only.
- Multiple covariates.
- Covariate and output variate must have a fixed time frequency.
- No support for discrete or exogenous variables.
GET /v1/models/:name/predict
​
Make a prediction using a specific model.
Example:
curl "http://localhost:8090/v1/models/my_model_name/predict"
Parameters:
name
: References the model name defined in thespicepod.yaml
.
Response​
- Success
- Bad Request
- Internal Error
{
"status": "Success",
"model_name": "my_model_name",
"model_version": "1.0",
"lookback": 30,
"prediction": [0.45, 0.50, 0.55],
"duration_ms": 123
}
{
"status": "BadRequest",
"error_message": "You have me a bad request :(",
"model_name": "my_model_name",
"lookback": 30,
"duration_ms": 12
}
{
"status": "InternalError",
"error_message": "Oops, the server couldn't predict",
"model_name": "my_model_name",
"lookback": 30,
"duration_ms": 12
}